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The problem about the motion of a pressure pulse at constant velocity along the 
boundary of an elastic homogeneous half-plane has been examined in [1-3]. The 
problem was considered as stationary in [i, 2], while in [3] it was solved by 
using a Laplace time transformation. An analogous problem is considered in this 
paper for an elastic half-plane with variable Lam~ parameters and density of the 
medium. 

I. An elastic half-plane xz, z > 0 is considered whose Lam~ parameters X, ~ and den- 
sity p depend on the coordinate z according to the power law 

=~~ ~ = ~ ~  P = P ~  ( 1 . 1 )  
8 = a z i t ,  v =  T + i  4 ~ + 2 ~  ~--'----T' ~ =  r - i  ' T = - - - g - .  

As is shown in [4], the equation of motion of such a medium can be represented as 

~aa __ v -2e(s-~) / (~-I) 02 ] 
V~ + (T - -  1) ~ z  Ot2 ] vn  = 0 ( 1 . 2 )  

vl 2 = (Lo § 2~o)po -~, v~ ~ = ~oPo -~, n = t,  2 

where v~, v2 are the elastic wave velocities, and a is a dimensionless parameter. 

The functions ~n and displacements u n are related by the dependences 

/ lU1= ~(/i~1), /2~2 = ~ X (~y~--~w ~ ) (1,3) 

The weight functions fn depends only on z; the unit vector iy is directed along the 
y axis. Let us consider a medium for which Xo = ~o. Then y = 3, and (1.2) simplify and 

become 

, i - - ~ - - ~  - ~ - 1 % = 0  ( 1 . 4 )  

For zero initial data the solution of the system (1.4) should satisfy the boundary 

conditions 

~ = - - ~ ( v t - - x ) ,  ~z  0 for z = 0  ( 1 . 5 )  

Here ~(~) is the Dirac function, v is the velocity of pressure pulse motion, t is the 

time, and Oz, Txz are stress tensor components. 

Let us introduce a new variable s by means of the formula s = vt -- x. Then the solu- 

tion of the system (1.4) can be represented in the form 

~1 : e-1 ~ G (a) exp ( fas  - -  aqz) d a  

r = e-1 ~ Q (a) exp ( ias - -  u6z)  d~ 
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where ~ is the separation parameter of (1.4). 

Let us use the boundary conditions (1.5) and the dependence (1.3) to determine the 
functions G and Q. This reduces to two equations, 

G (2~ 1 + a) Jr Q (2r ~ - v2v~ -~ q- aS) = 0 ( i .  6) 
G (2r162 2 - -  v2v2 -~ + 3a~l) + Q(28 + 3a)r162 2 = - 2 ~  -1 

An integral representation of the Dirac function 

5 (x) = -~--t i ei=,e da 
- - 0 o  

was used to obtain the second equation. 

Having determined the constants from (1.6), we find the displahements by using (1.3) 
oo 

u~ = ~ ~[(~ + aS)e - ~  - -  5(2~1 + a)e-~l  R-le-ir 
o 

o o  

He' 2 --= ~ t [a (2rl q- a) e -a-" --  (~ ~- aS) qe-~-'] R-le -i=~ da /2 z 

0 

The Rayleigh function of an inhomogeneous medium is denoted by R, of a homogeneous 
medium by Ro, and 5 = ~ + iw is the complex variable of integration 

R = 4~16a 2 - -  ~2 __ av~v2-2a~(3~l + 6) + 3a2(r 2 - - q 6 )  

= 2r162 2 __  v2v~-2 

2. Let us assume that the conditions 

( ~ z = - - H ( v t - - x ) ,  X:~z=0 for z = 0  (2 .1 )  

are given o:n the half-plane boundary. 

Here H(~) is the Heaviside function. 

Applying a Laplace time transform to the equations of motion (1.4) and the boundary 
conditions (2.1) and using (1.3), we obtain 

? 
(V 2-[---~-f-'2a0-v~-~'p2)~n=0, ~ ( p ) = f e - ~ t ~ p ( t ) d t  (2 .2 )  

0 

rt - 0~ 02 3a0 ~1-1-" 2 p 

(ox  + ),3 o Oz~" ~ z=o = (2.3) 

where p is the complex Laplace transform parameter. 

Let us seek the solution of (2.2) in the form 

= ~-~ I G (;) ~p (~p;~ - p V ;~ + G ~ z) a;, ~ = v~ 

(2.4) 

~ = ~-~ ~ q (;) exp (~p;x - p V~ + c~ z) ~;, ~ = ~ ~, ; = ~ ~ 

The in:tegration is over the real axis of the complex ~ plane. For uniqueness of the 
intergrands, let us fix the branches of the roots by the condition ~ = I. Substituting 
(2.4) into (2.3), we arrive at two integral equations to determine G(5), Q(E), 

~ [ G  (2p5 + a) q- Q (p%l ~ q- p ~  - -  apq)] exp (gp~x) d~ = 0 
(2.5) 

~ [ G ( - -  p~q-  3pb~q- 3a6) q- Q (2rlp~ ~ q-- 3ap~Z)] eir ': = e-p~z(=)lp ~ 

Setting 
(~) = - -  F (~) (p~l ~ q- p ~  -4- aP~l) 

Q (~) - F (~) (2p5 q- a) 

~ = V ~ + ~ I  ~, n = V ~ + ~  ~ 
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~z  

We satisfy the first equation in (2.5) identically and obtain an 
equation to determine the function F(~) 

iF (~) B (~) exp (~pSx) dE = -- p-" exp ( pxH;(x) ) (2.6) 
oo 

B (~) = p~ [4~ua - -  (2 ~'. + i )H - -  ap (3a + U) + 3 d •  
•  - -  ~18) = [4~2~36 - -  ( 2 ~  ~ + t )  ~] (p + p~) (p + p~) ( 2 . 7 )  

Closing the contour of integration in (2.6) for x > 0 and x < 
0, in the upper and lower half-planes, respectively, we find that 
the equation is satisfied for x > 0 if 

I 

- ~ , ~ i ~  

-%zi 

F ({) R (~) ----- L+ (~) [2nip'L+ (iv -~) (~ -- iv-X)l-X (2 .8 )  
and f o r  x < 0 

F ig .  1 f (~) R (~) = --  L_ (~) [2z~ipaL_ (-- i[~) (~ + i~)]-~, ~ --> oo 

On the real axis we have 

~+ = L+ (~ + i$) - -  L_ (~J ( ~ "  fv -x) = X_ 
L+ (iv-D L_ (-- @ 

Here L+, L_ are analytic functions, without singularities in the upper and lower half- 
planes, respectively. 

It hence follows that %+ is an analytic continuation of X- in the upper half-plane. 
Hence, % is an analytic function in the whole plane, i.e., is entire. 

For the integrals (2.5) to converge it is necessary to require that for z = 0 

~_ (~) ---- A[~ + B (2 .9)  

The c o n s t a n t s  A and B a r e  d e t e r m i n e d  by means o f  t h e  v a l u e s  ~-( - - iB) ,  X _ ( i v - ~ ) .  Hav- 
i ng  the  e x p r e s s i o n  f o r  X_(~;), we f i n d  F(~) from ( 2 . 9 ) .  Then (2 .6 )  w i l l  y i e l d  the  d e s i r e d  
f u n c t i o n s  G(~.), Q(g) .  By u s i n g  (2 .4 )  and (1.3) we d e t e r m i n e  the  d i s p l a c e m e n t s  as t he  
tr ans forms 

i {L 1] r pa [~Ro+ 28rl (38 + ~1)] - -  2~s  e _ ~  ~ _ Im eiPKx 28~ 
u~ ----- 2--~ p (~ - -  iv-l) B0 R 

d~ 
R 

(2.10) 

Re i e ipKx {__[28~ + pat$~Ro_26~2(36+~)]_2a~s~.je_pnz + 
--oo J~ 

[[(2~2+i)8~ pa[(38+~,6(2~2+l)+Bo~6]--aZ(l--~6)(2~+i,5]e_pSz l + d~ R J I 
sx = 6~1 (i --  ~16), s2 = 6~ ~ (i --  ~16), Ro = 4~2~6 - -  (2~ ~ + l) ~ 

The components are arranged here in powers of the parameter. For a = 0 the expres- 
sions (2.1) yield the displacements in the transforms for a homogeneous medium. 

3. Inversion of (2.10) into the space of originals is made directly from the table 
of inverse Laplace transforms. It is expedient to deform the path of integration in the 
complex plane in such a way that curves would be selected as the paths of integration on 
which the conditions 

I m  (i~x -- VlZ ) -- 0 (3 .1 )  
I m  ( i ~ x  - -  8z) = 0 

would be satisfied. 

The relationships (3.1) hold a long segment of the imaginary axis 

Re~ = • = 0  
%~ ~ H a 

0 < Im~ < o0. = V'l +H~ 
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and on the curves ~a(•  we have 

V ~ H ~  , -~--, X1 = - ~ ,  X a = i  ( 3 . 2 )  

Along t h e  p a t h  ( 3 . 2 )  we have  
O 

~x~ - z V ~  + x J  = z ~  (H + H - ' )  

L e t  us  examine  t h e  members i n  ( 2 . 1 0 )  which  o r i g i n a t e  b e c a u s e  o f  i n h o m o g e n e i t y  o f  t he  
medium. 

Performing the appropriate substitutions, the part of the horizontal displacement 
caused by inhomogeneity of the medium in the transforms can be written as 

Im e -p(wx+~z) ( pAl (~w) + aBt (iw) 

2 c~ 

[pA,( iw)+aB,(iw)]e-P(Wx+sz)] .  Im ~ I { e-pzw(H+H-') ( 3 . 3 )  

7~--1 W o n -  

X (pA:(s)- .~-aB:(s)  ~ __ [pA~(s)+aB~(s)]e-PZw(H+It-9~ 
ds (p + p:) (p + p~), (p + p:) ~ ~ ] 

We haw ~ _ here introduced the notation 

A,  = ~iRo + 2&l (36 + ~1), B,  = 2&l (t - -  ~15) 
A~ = ~lRo + (2~ ~ + i )  (35 + ~1), B~ ----" (2~ ~ + i)  (t - -  ~15) 

The first integral is taken over a segment of the imaginary axis, where 5 = iw, and 
the second, over the curve on which 

I " ) = H - :  ]/-w~ ~ - -  Wo~ ~ + iw~ ~--- s, ds = H (w~ --  Wo~)V" + i dw 

p,., = a {35 + ~ ~___ [(3~ + ~)~ - -  t2 (5~ --  x ~) R0]V, } (iR0)-: 

The p a t h s  o f  i n t e g r a t i o n  a r e  i n d i c a t e d  i n  F i g .  1. The two v a l u e s  ~r = 1,  */~ c o r r e -  
spond to  t h e  c u r v e s  (AB) n and (DC)n. The e x p r e s s i o n  i n  t h e  v e r t i c a l  d i s p l a c e m e n t  i s  w r i t -  
t e n  a n a l o g o u s l y .  

Us ing  t h e  t a b l e  o f  i n v e r s e  L a p l a c e  t r a n s f o r m s  i n  ( 3 . 3 ) ,  we o b t a i n  

aim ~. ~ I AI(~W~) t--expL--P/~ t ~- 
U~a - -  2~no~ ( ~  - -  ~ )  ~'2=, 2 [ ~ -  ~ - :  p~ X ( 3 . 4 )  

2 

: )](= 

(_ i )  ~-1 + 

o,m 
u 2neRo 2 (21 -- p~) X 

( -  t) ~-: + 
P~ 

A~(iw) i t - - e x p I - - P ~ ( t  

2 

• E / ' ( ' )  Y, - -  i v - 1  

n ~ l  Won k=l 

2 

A~ (s) E v - _ _  

2 

" [ (' - - a  s--:v-1 ~ e x p  --p~ 2 (--1)~-: 
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The expression (3.4) contains two kinds of members whose time variations differ qual- 
itatively. Part of the members decrease with the course of time. The other part of the 
members tends to a constant as t § = and determines the static part of the displacement. 

io 

2. 

3. 

4. 
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